• Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
  1. Boeken
  2. Natuur
  3. Wetenschap
  4. Wiskunde & Statistiek
  5. Machine Learning from Weak Supervision

Machine Learning from Weak Supervision E-BOOK

An Empirical Risk Minimization Approach

Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai
€ 64,07
+ 64 punten
Onmiddellijk beschikbaar
Eenvoudig bestellen
Veilig betalen
Onmiddellijk geleverd via e-mail

Omschrijving

Fundamental theory and practical algorithms of weakly supervised classification, emphasizing an approach based on empirical risk minimization.

Standard machine learning techniques require large amounts of labeled data to work well. When we apply machine learning to problems in the physical world, however, it is extremely difficult to collect such quantities of labeled data. In this book Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai and Gang Niu present theory and algorithms for weakly supervised learning, a paradigm of machine learning from weakly labeled data. Emphasizing an approach based on empirical risk minimization and drawing on state-of-the-art research in weakly supervised learning, the book provides both the fundamentals of the field and the advanced mathematical theories underlying them. It can be used as a reference for practitioners and researchers and in the classroom.

The book first mathematically formulates classification problems, defines common notations, and reviews various algorithms for supervised binary and multiclass classification. It then explores problems of binary weakly supervised classification, including positive-unlabeled (PU) classification, positive-negative-unlabeled (PNU) classification, and unlabeled-unlabeled (UU) classification. It then turns to multiclass classification, discussing complementary-label (CL) classification and partial-label (PL) classification. Finally, the book addresses more advanced issues, including a family of correction methods to improve the generalization performance of weakly supervised learning and the problem of class-prior estimation.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
320
Taal:
Engels
Reeks:

Eigenschappen

Productcode (EAN):
9780262370561
Verschijningsdatum:
22/08/2022
Uitvoering:
E-book
Beveiligd met:
Adobe DRM
Formaat:
ePub
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 64 punten op je klantenkaart van Standaard Boekhandel
CADEAU

Onze must-reads: hét eindejaarsgeschenk

Vul een gat in iemands lectuur
CADEAU
GDABD Must-read
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.