Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Autonomous robots have been a vision of robotics, artificial intelligence, and cognitive sciences. An important step towards this goal is to create robots that can learn to accomplish a multitude of different tasks triggered by environmental context and higher-level instruction. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s showed that handcrafted approaches do not suffice and that machine learning is needed. However, off the shelf learning techniques often do not scale into real-time or to the high-dimensional domains of manipulator and humanoid robotics. In this book, we investigate the foundations for a general approach to motor skill learning that employs domain-specific machine learning methods. A theoretically well-founded general approach to representing the required control structures for task representation and execution is presented along with novel learning algorithms that can be applied in this setting. The resulting framework is shown to work well both in simulation and on real robots.