Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
L’emploi du raisonnement par l’absurde a été source de contestations au cours de l’histoire des sciences. On en propose d’abord ici une définition qui puisse subsumer tous les cas particuliers, puis on montre comment un tel raisonnement indirect peut se retourner en un raisonnement direct qui lui soit logiquement équivalent, ce dont Aristote avait déjà pressenti la possibilité. Cette équivalence des deux procédures incite alors à chercher les raisons pragmatiques qui conduisent à privilégier l’une ou l’autre selon les problèmes ou leur contexte. Tantôt présent, tantôt absent, ce mode d’inférence peut jouer un rôle de révélateur dans l’histoire des mathématiques. Des exemples empruntés à Euclide ou à Archimède, aussi bien qu’à Cantor et aux logiciens modernes, viennent le confirmer. Les résultats obtenus sont l’occasion d’un retour critique sur la faveur ou la défaveur que le recours à l’absurde a rencontrée chez des philosophes comme Platon, Aristote, Descartes, Pascal, Spinoza ou Kant. Structurale et épistémologique, mais constamment référée à l’histoire, la présente étude est de celles qui recherchent dans les conditions mêmes de la connaissance mathématique l’explication de la forme que peut y prendre l’appareil de la preuve.