Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
La théorie des nombres est la branche des mathématiques qui s’intéresse aux propriétés des nombres entiers, notamment des nombres premiers. Il s’agit d’un sujet ancien, qui remonte à l’époque de la Grèce antique, et qui est étudié depuis de nombreuses années pour sa beauté et son élégance intrinsèques. Plusieurs de ses défis sont si faciles à énoncer que tout le monde peut les comprendre, et pourtant personne n’a jamais été capable de les résoudre. Récemment, la théorie des nombres a acquis une grande importance pratique dans le domaine de la cryptographie, où la sécurité des cartes de crédit, mais aussi des nations dépend d’un résultat concernant les nombres premiers qui remonte au xviii e siècle. Ces dernières années ont été marquées par d’autres développements spectaculaires, comme la publication par Andrew Wiles de la preuve du « dernier théorème de Fermat », 350 ans après son énoncé. Robin Wilson présente dans ce livre les principaux domaines de la théorie classique des nombres et leurs applications concrètes. En s’appuyant sur les travaux de plusieurs des plus grands mathématiciens, tels qu’Euclide, Fermat, Euler et Gauss, il montre l’évolution des problèmes les plus intéressants et créatifs de cette discipline.