Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
With rapid growth of internet traffic over last few years, the area of internet traffic classification becomes very significant for various ISPs. Now days, traditional internet traffic classification techniques such as port number and payload based techniques are seldom used because of use of dynamic port number instead of well-known port number in packet headers and various cryptographic techniques used to encrypt packet payload. Current trends are use of machine learning techniques for internet traffic classification. In this research work, downloaded internet traffic dataset, self-developed internet traffic datasets for packet capture duration of 2 minute and 2 seconds and reduced feature datasets developed using Correlation based Feature Selection Algorithm are employed for analysis purpose. Then, five ML algorithms Multilayer Perceptron, Radial Basis Function Neural Network, C4.5 Decision Tree, Bayes Net and Naïve Bayes algorithms are used for internet traffic classification. This analysis shows that C4.5 is an effective ML technique for internet traffic classification provided packet capture duration and number of features characterizing each sample should be minimum.