Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
We have classified the articles presented here in two Sections according to their general content. In Part I we have included papers which deal with statistical mechanics, math- ematical aspects of dynamical systems and sthochastic effects in nonequilibrium systems. Part II is devoted mainly to instabilities and self-organization in extended nonequilibrium systems. The study of partial differential equations by numerical and analytic methods plays a great role here and many works are related to this subject. Most recent developments in this fascinating and rapidly growing area are discussed. PART I STATISTICAL MECHANICS AND RELATED TOPICS NONEQUILIBRIUM POTENTIALS FOR PERIOD DOUBLING R. Graham and A. Hamm Fachbereich Physik, Universitiit Gesamthochschule Essen D4300 Essen 1 Germany ABSTRACT. In this lecture we consider the influence of weak stochastic perturbations on period doubling using nonequilibrium potentials, a concept which is explained in section 1 and formulated for the case of maps in section 2. In section 3 nonequilibrium potentials are considered for the family of quadratic maps (a) at the Feigenbaum 'attractor' with Gaussian noise, (b) for more general non- Gaussian noise, and (c) for the case of a strange repeller. Our discussion will be informal. A more detailed account of this and related material can be found in our papers [1-3] and in the reviews [4, 5], where further references to related work are also given. 1.