Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Written by an international and experienced team of authors, Implementing R for Statistics is a textbook designed for students of statistics and mathematics courses and professional statisticians. This timely first edition provides comprehensive coverage of basic statistical concepts using this important open-source programming language tool, from installing R and RStudio, to exploring its basic structure and uses, to extending some core functions such as vectors, basic mathematical operations, and data frames. It helps readers understand the latest advances in the R programming language, as R allows for sophisticated and elegant data visualization. Illustrated examples are an integral part of the text, carefully designed to apply the core principles illustrated in the text to emerging topics in the field. The text also focuses on exploiting the flexible and user-friendly nature of R. Basic concepts and recent advances in the field, including understanding the R basics, as well as implementing and practicing them in statistics, are covered in Implementing R for Statistics. The book also provides useful insights into the process of developing R packages. The text includes new content on applied statistics and R implementation, as well as updated material on building an R package and creating metadata. This first edition is an essential text for students, lecturers, data scientists, and applied researchers in all areas of statistics, as well as in related fields such as biostatistics, health care, finance, risk management, social sciences, market research, and environmental and climate research.