Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
n Angular Momentum Theory for Diatomic Molecules, R R method of trees, 3 construct the wave functions of more complicated systems for ex- ple many electron atoms or molecules. However, it was soon realized that unless the continuum is included, a set of hydrogenlike orbitals is not complete. To remedy this defect, Shull and Löwdin [273] - troduced sets of radial functions which could be expressed in terms of Laguerre polynomials multiplied by exponential factors. The sets were constructed in such a way as to be complete, i. e. any radial fu- tion obeying the appropriate boundary conditions could be expanded in terms of the Shull-Löwdin basis sets. Later Rotenberg [256, 257] gave the name "Sturmian" to basis sets of this type in order to emp- size their connection with Sturm-Liouville theory. There is a large and rapidly-growing literature on Sturmian basis functions; and selections from this literature are cited in the bibliography. In 1968, Goscinski [138] completed a study ofthe properties ofSt- rnian basis sets, formulating the problem in such a way as to make generalization of the concept very easy. In the present text, we shall follow Goscinski's easily generalizable definition of Sturmians.