Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je cadeautjes zeker op tijd in huis hebben voor de feestdagen? Kom langs in onze winkels en vind het perfecte geschenk!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Je cadeautjes zeker op tijd in huis hebben voor de feestdagen? Kom langs in onze winkels en vind het perfecte geschenk!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Überblick über die Methode der kleinsten Quadrate.- I. Abschnitt Grundzüge der Fehlerlehre.- § 1. Fehlerarten, theoretische Mittelwerte und Streuungsmaße.- 1.1 Grobe, systematische, zufallige und totale Fehler.- 1.2 Der theoretische Mittelwert.- 1.3 Die theoretischen Streuungsmaße.- 1.4 Zur Berechnung der Streuungsmaße.- § 2. Der mittlere Fehler von Funktionen unabhängiger Messungsgrößen (Gaußsches Fehlerfortpflanzungsgesetz).- 2.1 Der Einfluß der Beobachtungsfehler auf Funktionen gemessener Größen.- 2.2 Der relative Fehler einer Funktion gemessener Größen.- 2.3 Der mittlere Fehler einer Funktion gegenseitig unabhängiger Messungsgrößen.- § 3. Empirischer Mittelwert und empirischer mittlerer Fehler bei Beobachtungen gleicher Genauigkeit.- 3.1 Wahre und übrigbleibende Fehler.- 3.2 Empirischer Mittelwert und empirischer mittlerer Fehler einer ursprünglichen Beobachtung.- 3.3 Empirischer mittlerer Fehler des arithmetischen Mittels direkt beobachteter Messungsgrößen.- § 4. Empirischer Mittelwert und empirischer mittlerer Fehler bei Beobachtungen verschiedener Genauigkeit.- 4.1 Einführen des Gewichts und des allgemeinen arithmetischen Mittels.- 4.2 Beziehungen zwischen Gewichten und mittleren Fehlern.- 4.3 Die Gewichte von Funktionen direkt beobachteter Messungsgrößen.- 4.4 Der mittlere Fehler der Gewichtseinheit; homogenisierte und standardisierte Beobachtungen.- 4.5 Gewichtsreziproke oder Kofaktoren.- § 5. Empirische mittlere Beobachtungsfehler aus Doppelmessungen.- 5.1 Beobachtungspaare gleichen Gewichtes.- 5.2 Beobachtungspaare verschiedenen Gewichtes.- § 6. Fehlerfortpflanzungsgesetze für Beobachtungen mit systematischen Fehleranteilen und für korrelierte Beobachtungen.- 6.1 Beobachtungen mit systematischen Fehleranteilen.- 6.2 Gegenseitig abhängige oder korrelierte Beobachtungen.- § 7. Das Gaußsche Fehlergesetz.- 7.1 Fehlerhäufigkeit und Fehlerwahrscheinlichkeit.- 7.2 Die Fehlerhäufigkeits- und die Fehlerwahrscheinlichkeitsfunktion.- 7.3 Die graphische Darstellung von ?(?).- 7.4 Hagens Ableitung des Fehlergesetzes.- 7.5 Fehlergesetz und Beobachtungsreihen.- § 8. Die fehlertheoretische Begründung und die mittleren Fehler der Genauigkeitsmaße.- 8.1 Beziehungen zwischen ?, ?, ? und h.- 8.2 Zur Theorie des Maximalfehlers.- 8.3 Der mittlere Fehler eines aus n wahren Fehlern berechneten empirischen mittleren Fehlers.- 8.4 Der mittlere Fehler eines aus n übrigbleibenden Fehlern berechneten empirischen mittleren Fehlers.- 8.5 Zufallskriterien.- II. Abschnitt Ausgleichung von direkten Beobachtungen.- § 9. Grundprinzip und Formen der Ausgleichungsaufgabe.- 9.1 Die Aufgabe der Ausgleichungsrechnung.- 9.2 Das Ausgleichungsprinzip.- 9.3 Ausgleichungsverfahren.- § 10. Ausgleichung direkter Beobachtungen gleicher Genauigkeit (Arithmetisches Mittel).- §11. Ausgleichung direkter Beobachtungen verschiedener Genauigkeit (Allgemeines arithmetisches Mittel).- § 12. Beobachtungen mit Summengleichung.- III. Abschnitt Ausgleichung von vermittelnden Beobachtungen.- §13. Einführung in die Methode der vermittelnden Beobachtungen.- § 14. Aufstellen der Fehlergleichungen.- 14.1 Wahl der Unbekannten.- 14.2 Lineare Fehlergleichungen.- 14.3 Nichtlineare Fehlergleichungen.- §15. Aufstellen und Auflösen der Normalgleichungen.- 15.1 Aufstellen der Normalgleichungen.- 15.2 Auflösen der Normalgleichungen nach dem Gaußschen Algorithmus.- 15.3 Übergang auf mehrere Unbekannte.- 15.4 Das System der Endgleichungen.- §16. Vervollständigung des Algorithmus durch Summen- und [vv]-Proben.- 16.1 Die Summenproben.- 16.2 v-Proben und [vv]-Proben.- 16.3 Die Schlußprobe.- 16.4 Anordnung der Zahlenrechnung.- § 17. Gewichtskoeffizienten und mittlere Fehler der Unbekannten.- 17.1 Herleitung der Gewichtskoeffizienten.- 17.2 Berechnung der Gewichtskoeffizienten aus ihren Endgleichungen.- 17.3 Gleichzeitige Auflösung von Normal- und Gewichtsgleichungen.- 17.4 Die unbestimmte Auflösung.- 17.5 Gewichtskoeffizienten bei nur zw