Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Graph theory is a rapidly evolving and expanding mathematical discipline, with new discoveries, challenges, and techniques emerging every year. Graph Theory: Fundamentals and Applications provides a fully up-to-date and accessible introduction to graph theory, covering both the classical and the modern topics, as well as algorithms and evolving challenges addressed by discipline. Based on the latest syllabi and research trends worldwide, this book includes practical, solved problems that are user friendly to undergraduate, postgraduate, and PhD students, and acts as a key aid in learning the fundamentals and the frontiers of graph theory, as well as developing independent problem-solving and critical thinking skills. This book includes clear instruction in graph representation, basic graph operations, graph connectivity, trees and forests, matching theory, planar graphs and graph drawing, algebraic graph theory, graph traversals, network flows, topological graph theory, and cryptography, among other topics. Each chapter features key term definitions, proofs and algorithms, summary points, and unique exercises to reinforce learning, as well as open problems and research challenges that present unsolved or conjectural problems in graph theory for discussion. Supporting student and instructor sites offer additional exercises, solutions, examples, and case studies in graph theory applications.