Fuzzy set theory - and its underlying fuzzy logic - represents one of the most significant scientific and cultural paradigms to emerge in the last half-century. Its theoretical and technological promise is vast, and we are only beginning to experience its potential. Clustering is the first and most basic application of fuzzy set theory, but forms the basis of many, more sophisticated, intelligent computational models, particularly in pattern recognition, data mining, adaptive and hierarchical clustering, and classifier design.
Fuzzy Sets and their Application to Clustering and Training offers a comprehensive introduction to fuzzy set theory, focusing on the concepts and results needed for training and clustering applications. It provides a unified mathematical framework for fuzzy classification and clustering, a methodology for developing training and classification methods, and a general method for obtaining a variety of fuzzy clustering algorithms.We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.