Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je cadeautjes zeker op tijd in huis hebben voor de feestdagen? Kom langs in onze winkels en vind het perfecte geschenk!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Je cadeautjes zeker op tijd in huis hebben voor de feestdagen? Kom langs in onze winkels en vind het perfecte geschenk!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Este libro presenta una propuesta relacionada con las tareas de clasificación del aprendizaje automático. La propuesta abarca los distintos niveles necesarios para diseñar e implementar un multiclasificador que posee la habilidad de procesar datos con información imperfecta. La intención ha sido presentar un clasificador que mantenga un alto grado de precisión con datos crisp y que también sea capaz de procesar datos fuzzy, manteniendo un buen rendimiento ante datos missing y diferentes tipos de ruido. Para lograrlo se han empleado técnicas de soft computing (especialmente la lógica fuzzy) generando algoritmos, métodos y procedimientos que se han conjuntado en una propuesta metodológica que hemos llamado Fuzzy Random Forest. También se han planteado una amplia variedad de métodos de combinación para trabajar con Fuzzy Random Forest. Fuzzy Random Forest está inspirado en la metodología Random Forest de Breiman, sin embargo los dos elementos principales que lo conforman son: un árbol fuzzy, como clasificador base, en el que se introducen elementos aleatorios y los métodos de combinación que fusionan la información o votos de cada árbol.