• Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
  1. Boeken
  2. Bedrijf & Technologie
  3. Techniek
  4. Energie
  5. Fractional-Order Activation Functions for Neural Networks

Fractional-Order Activation Functions for Neural Networks

Case Studies on Forecasting Wind Turbines' Generated Power

Kishore Bingi, Ramadevi Bhukya, Venkata Ramana Kasi
Hardcover | Engels | Studies in Systems, Decision and Control | nr. 588
€ 274,95
+ 549 punten
Levering 2 à 3 weken
Eenvoudig bestellen
Veilig betalen
Gratis thuislevering vanaf € 30 (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

This book suggests the development of single and multi-layer fractional-order neural networks that incorporate fractional-order activation functions derived using fractional-order derivatives. Activation functions are essential in neural networks as they introduce nonlinearity, enabling the models to learn complex patterns in data. However, traditional activation functions have limitations such as non-differentiability, vanishing gradient problems, and inactive neurons at negative inputs, which can affect the performance of neural networks, especially for tasks involving intricate nonlinear dynamics. To address these issues, fractional-order derivatives from fractional calculus have been proposed. These derivatives can model complex systems with non-local or non-Markovian behavior. The aim is to improve wind power prediction accuracy using datasets from the Texas wind turbine and Jeju Island wind farm under various scenarios. The book explores the advantages of fractional-order activation functions in terms of robustness, faster convergence, and greater flexibility in hyper-parameter tuning. It includes a comparative analysis of single and multi-layer fractional-order neural networks versus conventional neural networks, assessing their performance based on metrics such as mean square error and coefficient of determination. The impact of using machine learning models to impute missing data on the performance of networks is also discussed. This book demonstrates the potential of fractional-order activation functions to enhance neural network models, particularly in predicting chaotic time series. The findings suggest that fractional-order activation functions can significantly improve accuracy and performance, emphasizing the importance of advancing activation function design in neural network analysis. Additionally, the book is a valuable teaching and learning resource for undergraduate and postgraduate students conducting research in this field.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
238
Taal:
Engels
Reeks:
Reeksnummer:
nr. 588

Eigenschappen

Productcode (EAN):
9783031880902
Verschijningsdatum:
24/05/2025
Uitvoering:
Hardcover
Formaat:
Genaaid
Afmetingen:
163 mm x 240 mm
Gewicht:
571 g
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 549 punten op je klantenkaart van Standaard Boekhandel
Wedstrijd

Alleen in onze winkels: Win een weekend voor twee in Parijs

bij aankoop van een titel uit de selectie
Wedstrijd
wedstrijd parijs
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.