Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Zum Kontext dieses Buches Die numerische Behandlung partieller Differentialgleichungen beinhaltet im allgemeinen die Lösung großer bis sehr großer Gleichungssysteme. Bei dreidimensionalen Problemen z. B. sind mehrere Millionen Unbekannte keine Seltenheit, und obwohl die Rechenleistung der stärksten Computer in den letzten Jahrzehnten exponentiell angestiegen ist, könnten viele praxis- relevante Probleme heute nicht gelöst werden, wären die Numeriker nicht bei der Entwicklung effizienter Algorithmen ähnlich erfolgreich gewesen. Zu den bemerkenswertesten Fortschritten auf diesem Gebiet zählt die Entwicklung adaptiver Mehrgitter-und Multilevelverfahren, deren Erfolg auf der Verschmelzung zweier leistungsfähiger Konzepte beruht: der Kombination adaptiver Diskretisierungstechniken mit schnellen Mehrgitter- bzw. Multilevellösern. Die Anwendung adaptiver Diskretisierungstechniken dient zunächst dazu, die Anzahl der Unbekannten und damit die Dimension des zu lösenden Gleichungssystems möglichst gering zu halten. Wurden früher zur Diskretisierung partieller Differentialgleichungen in erster Linie gleichmäßig strukturierte Rechteckgitter verwendet, so ist man heute durch den Einsatz ge- eigneter Fehlerschätzer in der Lage, die Diskretisierung - ausgehend von einem relativ groben Anfangsgitter und einer entsprechend groben Näherungslösung - schrittweise an die aktuel- le Näherungslösung anzupassen, bis die gewünschte Genauigkeit erreicht ist. Üblicherweise wird dazu das aktuelle Diskretisierungsgitter lokal verfeinert, und zwar an solchen Stellen, wo aufgrund entsprechender Fehlerabschätzungen eine höhere Genauigkeit zu erwarten ist, z. B. in der Nähe von Singularitäten, Grenzschichten, einspringenden Ecken, etc. Bereiche, in denen die Lösung sichals hinreichend glatt herausstellt, bleiben unverfeinert oder könne- etwa bei zeit abhängigen Anwendungen - sogar wieder vergröbert werden.