Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Revision with unchanged content. In many predictive modeling tasks, one has a fixed set of observations from which a vast, or even infinite, set of potentially predictive features can be com-puted. Of these features, often only a small number are expected to be use-ful in a predictive model. Models which use the entire set of features will almost certainly overfit on future data sets. The book presents streamwise feature selection which interleaves the pro-cess of generating new features with that of feature testing. Streamwise fea-ture selection scales well to large feature sets. The book also describes how to use streamwise feature seleciton in multivariate regressions. It includes a review of traditional feature selecitions in a general frame-work based on information theory, and compares these methods with streamwise feature selection on various real and synthetic data sets. This book is intended to be used by researchers in machine learning, data mining, and knowledge discovery.