Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Medical Image Fusion has been used to derive the useful information from multimodality medical image data. The idea is to improve the image content by fusing images like CT and MRI image, so as to improve more information to the doctor and clinical treatment planning system. Despite the significant research conducted on this topic and many algorithms have been developed for the image fusion, but the development of an efficient image fusion method is still a big challenge for the researchers. In the Present work, New Efficient Method is proposed for Image Fusion. The proposed method is developed using Discrete Wavelet Transform and it involves region based fusion rules to optimize the image pixel values to be fused togather. The proposed method is compared with both qualitatively as well as quantitatively with the other fusion methods. After that the resultant images are validated using Phantom Images as well as Clinical Testing. The Experimental results show that the proposed method is better than other multi model image fusion methods and increases the contrast of the fused image thereby preserving the detail features.