Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Differential Dielectric Sensor - Analysis and Experimental Investigation of a Modular Differential Dielectric Sensor for Use in Multiphase Separation, Process Measurement and Control
Differential Dielectric Sensor - Analysis and Experimental Investigation of a Modular Differential Dielectric Sensor for Use in Multiphase Separation, Process Measurement and Control
Analysis and Experimental Investigation of a Modular Differential Dielectric Sensor for Use in Multiphase Separation, Process Measurement and Control
In subsea processing systems, oil industry increasingly demands accurate and stable continuous measurement of the percent water in crude oil production streams (watercut) over the entire 0 to 100% range. Differential Dielectric Sensors (DDS) have been developed as independent tools connected with multiphase meters for process management and composition measurement. DDS is unique in its use of very low noise and high sensitivity differential measurements between two identical sensors and the use of physics based models for multiphase flow characterization. Existing watercut tools predominantly depend on empirical data and correlations that are sensitive to fluid properties and therefore are limited in their general applicability. The main objective of this work is to develop appropriate mathematical models for the sensor. Finite Element Analysis (FEA) and experimental investigations have been conducted to validate the sensor analytical models. This study provides the scientists and engineers a powerful tool for process management and control in the oil industry.