Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Seitdem Kant zum Ausgang des 18. Jahrhunderts festgestellt hatte, dass die mathematischen Urteile insgesamt synthetisch a priori sind, wird bis zum heutigen Tag kontrovers darüber diskutiert, ob solche Urteile überhaupt mög-lich sind. Gut 100 Jahre nach Kant wurde durch Frege zumindest für die Sät-ze der Arithmetik deren Analytizität nahe gelegt - eine Auffassung, die weit-hin akzeptiert scheint. Trotz dieser vermeintlich klaren Sachlage widmet sich die vorliegende Arbeit erneut der Aufgabe, die Mathematik als Wissenschaft zu charakterisieren. In der Tradition des linguistic und pragmatic turn stehend, erfolgt hierbei die Klä-rung des Geltungstyps mathematischer Sätze eingebettet in die Beantwortung der Frage, was "Begründen in der Mathematik" bedeutet. Ausgehend von einer Handlungstheorie für beweisende Wissenschaften wird ein philosophisch neuer Zugang zur Axiomatik entworfen, der erklärt, wie mittels des Setzens von Axiomen die mathematische Wirklichkeit allererst konstituiert wird. Mit diesem Ansatz kann für jedes mathematische Axiom genau bestimmt werden, worin sein spezifisch synthetisch apriorischer Charakter besteht. Während-dessen erweist sich eine hiervon unabhängige Analyse des Neo-Fregeanismus als Niederlage für Freges Erben, denn auch moderne logizistische Program-me bekommen ihre Grenzen durch die Arithmetik aufgezeigt. Kant mag zwar nicht im Besitz der erforderlichen Mittel gewesen sein, aber er hatte die richtige Idee!