Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Development of Thermal Radiation and Convection Models, their Integration with a Zonal Airflow Model and Application to Aircraft Bays and Automobile Cabins
Development of Thermal Radiation and Convection Models, their Integration with a Zonal Airflow Model and Application to Aircraft Bays and Automobile Cabins
The transition toward more-electric aircraft and electric vehicles introduces significant thermal management challenges due to the presence of localized heat sources and the absence of waste heat. To accurately predict the resulting thermal environment, an advanced zonal thermal modeling platform has been developed. This platform integrates high-resolution longwave radiation (RADZO), convection (CONZO), and airflow (VEPZO) models. Designed for applications in aerospace, automotive, and other complex enclosures, it offers a balance between computational efficiency and predictive accuracy. RADZO provides detailed radiative heat exchange calculations using refined surface meshes and precise view factor determination, even in obstructed and intricate geometries. CONZO employs calibrated convection models based on zonal air change per hour (ACH), enabling reliable predictions of surface heating and cooling across a wide range of configurations.
Developed models are validated across full-scale aircraft and automotive mockups. With automated geometry processing and fast simulation times, this hybrid zonal thermal modelling approach delivers good accuracy at low computational load. The zonal thermal model provides platform for engineers and thermal designers seeking a scalable, ready-to-deploy solution for complex indoor environments.