Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Artificial intelligence technology has entered an extraordinary phase of fast development and wide application. The techniques developed in traditional AI research areas, such as computer vision and object recognition, have found many innovative applications in an array of real-world settings. The general methodological contributions from AI, such as a variety of recently developed deep learning algorithms, have also been applied to a wide spectrum of fields such as surveillance applications, real-time processing, IoT devices, and health care systems. The state-of-the-art and deep learning models have wider applicability and are highly efficient. Deep Learning in Action: Image and Video Processing for Practical Use provides a comprehensive and accessible resource for both intermediate to advanced readers seeking to harness the power of deep learning in the domains of video and image processing. The book bridges the gap between theoretical concepts and practical implementation by emphasizing lightweight approaches, enabling readers to efficiently apply deep learning techniques to real-world scenarios. It focuses on resource-efficient methods, making it particularly relevant in contexts where computational constraints are a concern.