Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Why do we observe such dramatic differences in labour productivity across countries in the macro data? This thesis argues that the growth empirics literature oversimplifies the complexity of the production process across countries and neglects data cross-section and time-series properties, leading to bias in the empirical estimates. Chapter 1 presents two general empirical frameworks for cross-country productivity analysis and demonstrates that they encompass the growth empirics literature of the past decades. We introduce our central argument of cross-country heterogeneity in the impact of observables and unobservables on output and develop this against the background of the pertinent time-series and cross-section properties of macro panel data. Chapters 2 and 3 present empirical implementations for cross-country panel data for the manufacturing and agriculture sector respectively. Monte Carlo simulations in Chapter 4 investigate the performance of the standard (micro-) and novel panel estimators in the presence of nonstationarity, parameter heterogeneity and cross-section dependence. Our conclusion highlights the importance of these data properties for estimation and inference.