Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In the large and thriving field of compact transformation groups an important role has long been played by cohomological methods. This book aims to give a contemporary account of such methods, in particular the applications of ordinary cohomology theory and rational homotopy theory with principal emphasis on actions of tori and elementary abelian p-groups on finite-dimensional spaces. For example, spectral sequences are not used in Chapter 1, where the approach is by means of cochain complexes; and much of the basic theory of cochain complexes needed for this chapter is outlined in an appendix. For simplicity, emphasis is put on G-CW-complexes; the refinements needed to treat more general finite-dimensional (or finitistic) G-spaces are often discussed separately. Subsequent chapters give systematic treatments of the Localization Theorem, applications of rational homotopy theory, equivariant Tate cohomology and actions on Poincaré duality spaces. Many shorter and more specialized topics are included also. Chapter 2 contains a summary of the main definitions and results from Sullivan's version of rational homotopy theory which are used in the book.