Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
1. Complex Spaces.- § 1. The Notion of a Complex Space.- § 2. General Properties of Complex Spaces.- § 3. Direct Products and Graphs.- § 4. Complex Spaces and Cohomology.- 2. Local Weierstrass Theory.- § 1. The Weierstrass Theorems.- § 2. Algebraic Structure of $${O_{{C^n},0}}$$.- § 3. Finite Maps.- §4. The Weierstrass Isomorphism.- § 5. Coherence of Structure Sheaves.- 3. Finite Holomorphic Maps.- § 1. Finite Mapping Theorem.- § 2. Rückert Nullstellensatz for Coherent Sheaves.- § 3. Finite Open Holomorphic Maps.- § 4. Local Description of Complex Subspaces in ?n.- 4. Analytic Sets. Coherence of Ideal Sheaves.- § 1. Analytic Sets and their Ideal Sheaves.- § 2. Coherence of the Sheaves i (A).- § 3. Applications of the Fundamental Theorem and of the Nullstellensatz.- § 4. Coherent and Locally Free Sheaves.- 5. Dimension Theory.- § 1. Analytic and Algebraic Dimension.- § 2. Active Germs and the Active Lemma.- § 3. Applications of the Active Lemma.- § 4. Dimension and Finite Maps. Pure Dimensional Spaces.- § 5. Maximum Principle.- § 6. Noether Lemma for Coherent Analytic Sheaves.- 6. Analyticity of the Singular Locus. Normalization of the Structure Sheaf.- § 1. Embedding Dimension.- § 2. Smooth Points and the Singular Locus.- § 3. The Sheaf M of Germs of Meromorphic Functions.- § 4. The Normalization Sheaf $${\hat O_X}$$.- § 5. Criterion of Normality. Theorem of Oka.- 7. Riemann Extension Theorem and Analytic Coverings.- § 1. Riemann Extension Theorem on Complex Manifolds.- § 2. Analytic Coverings.- § 3. Theorem of Primitive Element.- § 4. Applications of the Theorem of Primitive Element.- § 5. Analytically Normal Vector Bundles.- 8. Normalization of Complex Spaces.- § 1. One-Sheeted Analytic Coverings.- § 2. The Local ExistenceTheorem. Coherence of the Normalization Sheaf.- § 3. The Global Existence Theorem. Existence of Normalization Spaces.- § 4. Properties of the Normalization.- 9. Irreducibility and Connectivity. Extension of Analytic Sets.- § 1. Irreducible Complex Spaces.- § 2. Global Decomposition of Complex Spaces.- § 3. Local and Arcwise Connectedness of Complex Spaces.- § 4. Removable Singularities of Analytic Sets.- § 5. Theorems of Chow, Levi and Hurwitz-Weierstrass.- 10. Direct Image Theorem.- § 1. Polydisc Modules.- § 2. Proof of Lemmata F(q) and Z(q).- § 3. Sheaves of Polydisc Modules.- § 4. Coherence of Direct Image Sheaves.- § 5. Regular Families of Compact Complex Manifolds.- § 6. Stein Factorization and Applications.- Annex. Theory of Sheaves. Notion of Coherence.- §0. Sheaves.- 1. Sheaves and Morphisms - 2. Restrictions, Subsheaves and Sums of Sheaves - 3. Sections. Hausdorff Sheaves.- § 1. Construction of Sheaves from Presheaves.- 1. Presheaves - 2. The Sheaf Associated to a Preshaf - 3. Canonical Presheaves - 4. Image Sheaves.- § 2. Sheaves and Presheaves with Algebraic Structure.- 1. Sheaves of Groups, Rings and A-Modules - 2. The Category of A-Modules. Quotient Sheaves - 3. Presheaves with Algebraic Structure - 4. The Functor Hom - 5. The Functor ?.- § 3. Coherent Sheaves.- 1. Sheaves of Finite Type - 2. Sheaves of Relation Finite Type - 3. Coherent Sheaves.- § 4. Yoga of Coherent Sheaves.- 1. Three Lemma - 2. Consequences of the Three Lemma - 3. Coherence of Trivial Extensions - 4. Coherence of the Functors Hom and ? - 5. Annihilator Sheaves.- Index of Names.