Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In this research work clustering based techniques is employed on images which results into segmentation of images. The performance of Fuzzy C-means (FCM) integrated with the Particle Swarm optimization (PSO) technique and its variations are analyzed in different application fields. To analyze and grade the performance, computational and time complexity of techniques in different fields several metrics are used. Then the four well known techniques of image segmentation namely Fuzzy C-means algorithm, neighborhood information, Partial differential equation based level set methods and Particle swarm optimization based fractional order Darwinian particle swarm optimization are integrated in order to obtain the improved segmentation. This experimental performance analysis shows that FCM along with fractional order Darwinian PSO give better performance in terms of classification accuracy, as compared to other variation of other techniques used. The integrated algorithm tested on images proves to give better results visually as well as objectively and are more real time compatible.