Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
  • Afhalen na 1 uur in een winkel met voorraad
  • In januari gratis thuislevering in België
  • Ruim aanbod met 7 miljoen producten
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
  • Afhalen na 1 uur in een winkel met voorraad
  • In januari gratis thuislevering in België
  • Ruim aanbod met 7 miljoen producten
  1. Boeken
  2. Bedrijf & Technologie
  3. Informatica
  4. Classifier Learning for Imbalanced Data

Classifier Learning for Imbalanced Data

Jörg Mennicke, Christian Münzenmayer, Ute Schmid
Paperback | Engels
€ 99,95
+ 199 punten
Levering 2 à 3 weken
Eenvoudig bestellen
Veilig betalen
In januari gratis thuislevering in België (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

This work discusses the theoretical abilities of three commonly used classifier learning methods and optimization techniques to cope with characteristics of real-world classification problems, more specifically varying misclassification costs, imbalanced data sets and varying degrees of hardness of class boundaries. From these discussions a universally applicable optimization framework is derived that successfully corrects the error-based inductive bias of classifier learning methods on image data within the domain of medical diagnosis. The framework was designed considering several points for improvement of common optimization techniques, such as the modification of the optimization procedure for inducer-specific parameters, the modification of input data by an arcing algorithm, and the combination of classifiers according to locally-adaptive, cost-sensitive voting schemes. The framework is designed to make the learning process cost-sensitive and to enforce more balanced misclassification costs between classes. Results on the evaluated domain are promising, while further improvements can be expected after some modifications to the framework.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
184
Taal:
Engels

Eigenschappen

Productcode (EAN):
9783836492232
Verschijningsdatum:
4/08/2008
Uitvoering:
Paperback
Formaat:
Trade paperback (VS)
Afmetingen:
152 mm x 229 mm
Gewicht:
254 g
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 199 punten op je klantenkaart van Standaard Boekhandel
SOLDEN

30% korting

op een mooie selectie boeken en papierwaren
SOLDEN
solden
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.