• Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten

Choquet Capacities and Fuzzy Integrals

Gleb Beliakov, Simon James, Jian-Zhang Wu
€ 137,45
+ 274 punten
Pre-order nu, verschijningsdatum onbekend
Eenvoudig bestellen
Veilig betalen
Gratis thuislevering vanaf € 30 (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

Choquet capacities, which provide the weighting mechanism for the Choquet and other fuzzy integrals, model synergistic and antagonistic interactions between variables by assigning value to all subsets rather than individual inputs.

While the flexibility of capacities (also referred to as fuzzy measures and cooperative games) comes at the expense of an exponentially increasing number of parameters, the ability to explain their behavior using various value and interaction indices makes them appealing for applications requiring transparency and interpretability. As well as a number of useful indices that in some way capture the extent to which positive and negative interactions occur, significant progress has been made in addressing the scalability issues that arise in applications. This book provides a detailed overview of the background concepts relating to capacities and their role in fuzzy integration and aggregation, then presents specialised chapters on most recent results in learning, random sampling and optimization that involve Choquet capacities.

Topics and features:

- Fundamentals of Choquet capacities (fuzzy measures) and their use in modeling importance and interaction between variables - Definitions, properties and mappings between alternative representations that allow capacities and fuzzy integrals to be interpreted and applied in different settings - Various simplification assumptions, from k-additive, p-symmetric and l-measures to more recent concepts such as k-interactive and hierarchical frameworks - Capacity learning formulations that allow the diverse types to be elicited from datasets or according to user-specified requirements - Recent findings related to random sampling and optimisation with Choquet integral objectives

This book includes illustrative examples and guidance for implementation, including an appendix detailing functions found in the pyfmtools software library. It aims to be useful for practitioners and researchers in decision and data-driven fields, or those who wish to apply these emerging tools to new problems.

The authors are all affiliated with the School of Information Technology at Deakin University, Australia. Gleb Beliakov is a professor, Simon James is an Associate Professor, and Jian-Zhang Wu is a Research Fellow.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
400
Taal:
Engels
Reeks:

Eigenschappen

Productcode (EAN):
9783031970696
Verschijningsdatum:
25/10/2025
Uitvoering:
Hardcover
Formaat:
Genaaid
Afmetingen:
155 mm x 235 mm
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 274 punten op je klantenkaart van Standaard Boekhandel
E-BOOK ACTIE

Tot meer dan 50% korting

op een selectie e-books
E-BOOK ACTIE
Ebooks met korting augustus
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.