Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
Afhalen na 1 uur in een winkel met voorraad
In januari gratis thuislevering in België
Ruim aanbod met 7 miljoen producten
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In januari gratis thuislevering in België (via bpost)
Gratis levering in je Standaard Boekhandel
Omschrijving
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data generation process as a causal model. This perspective enables one to reason about the effects of changes to this process (interventions) and what would have happened in hindsight (counterfactuals). CausalML can be categorized into five groups according to the problems they address, namely (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, and (5) causal reinforcement learning. In this monograph, approaches in the five categories of CausalML are systematically compared, and open problems are identified. The field-specific applications in computer vision, natural language processing, and graph representation learning are reviewed. Further, an overview of causal benchmarks is provided, as well as a discussion of the state of this nascent field, including recommendations for future work.