Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
Afhalen na 1 uur in een winkel met voorraad
In januari gratis thuislevering in België
Ruim aanbod met 7 miljoen producten
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In januari gratis thuislevering in België (via bpost)
Gratis levering in je Standaard Boekhandel
Omschrijving
Biomedical Data Mining is an ever growing area of Natural Laguage Processing. This book provides an introduction to this field and its experimental account using machine learning techniques. It describes a novel method of automatic training data production using a biomedical ontology. This is an alternative to the traditional approaches involving labour-expensive manual data annotation. More specifically we address the task of gene name disambiguation. In biomedical literature same gene names tend to be used to refer to a number of entities, e.g. gene itself, RNA sequence, the protein produced, or some other product. Therefore, when performing information extraction tasks identifying gene names is not sufficient and it is necessary to distinguish between all biological entities they refer to. We derive a set of rules from a biomedical ontology, and then apply them to tag the data. This data is then used to train a maximum entropy classifier, that proves to be capable to learn new information and improve over the ontology-based knowledge specified a priori. The machine learning techniques described in this book can be applied to text mining in any domain.