Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten

Bayesian Statistical Methods

With Applications to Machine Learning

Brian J Reich, Sujit K Ghosh
€ 161,45
+ 322 punten
Uitvoering
Levering 2 à 3 weken
Eenvoudig bestellen
Veilig betalen
In januari gratis thuislevering in België (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

Bayesian Statistical Methods: With Applications to Machine Learning provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. Compared to others, this book is more focused on Bayesian methods applied routinely in practice, including multiple linear regression, mixed effects models and generalized linear models. This second edition includes a new chapter on Bayesian machine learning methods to handle large and complex datasets and several new applications to illustrate the benefits of the Bayesian approach in terms of uncertainty quantification.

Readers familiar with only introductory statistics will find this book accessible, as it includes many worked examples with complete R code, and comparisons are presented with analogous frequentist procedures. The book can be used as a one-semester course for advanced undergraduate and graduate students and can be used in courses comprising undergraduate statistics majors, as well as non-statistics graduate students from other disciplines such as engineering, ecology and psychology. In addition to thorough treatment of the basic concepts of Bayesian inferential methods, the book covers many general topics:

  • Advice on selecting prior distributions
  • Computational methods including Markov chain Monte Carlo (MCMC) sampling
  • Model-comparison and goodness-of-fit measures, including sensitivity to priors.

To illustrate the flexibility of the Bayesian approaches for complex data structures, the latter chapters provide case studies covering advanced topics:

  • Handling of missing and censored data
  • Priors for high-dimensional regression models
  • Machine learning models including Bayesian adaptive regression trees and deep learning
  • Computational techniques for large datasets
  • Frequentist properties of Bayesian methods.

The advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets and complete data analyses is made available on the book's website.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
348
Taal:
Engels
Reeks:

Eigenschappen

Productcode (EAN):
9781032486321
Verschijningsdatum:
2/02/2026
Uitvoering:
Hardcover
Formaat:
Genaaid
Afmetingen:
178 mm x 254 mm
Gewicht:
449 g
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 322 punten op je klantenkaart van Standaard Boekhandel
CADEAU

Onze must-reads: hét eindejaarsgeschenk

Vul een gat in iemands lectuur
CADEAU
GDABD Must-read
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.