Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
L'étude mathématique des problèmes d'optimisation, ou de ceux dits variationnels de manière générale (c'est-à-dire, " toute situation où il y a quelque chose à minimiser sous des contraintes "), requiert en préalable qu'on en maîtrise les bases, les outils fondamentaux et quelques principes. Le présent ouvrage est un cours répondant en partie à cette demande, il est principalement destiné à des étudiants de Master en formation, et restreint à l'essentiel. Sont abordés successivement : La semicontinuité inférieure, les topologies faibles, les résultats fondamentaux d'existence en optimisation ; Les conditions d'optimalité approchée ; Des développements sur la projection sur un convexe fermé, notamment sur un cône convexe fermé ; L'analyse convexe dans son rôle opératoire ; Quelques schémas de dualisation dans des problèmes d'optimisation non convexe structurés ; Une introduction aux sous-différentiels généralisés de fonctions non différentiables.