Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je cadeautjes zeker op tijd in huis hebben voor de feestdagen? Kom langs in onze winkels en vind het perfecte geschenk!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Je cadeautjes zeker op tijd in huis hebben voor de feestdagen? Kom langs in onze winkels en vind het perfecte geschenk!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
torischen Gruppenelemente sind und in den en wir geometrische Bezie- hungen wie Inzidenz undOrthogonalitat durch gruppentheoretische Rela- tionen erklaren. Die rein gruppentheoretisch formulierten Axiome, die wir wahlen, stellen einfache geometrische Aussagen flir die Punkte und Geraden der metrischen Ebenen dar. Dementsprechend kann man beim Beweisen aus den Axiomen die Vorteile des gruppentheoretischen Kalktils ausnutzen, ohne den Leitfaden der Anschauung aus der Hand zu geben. Bemerkenswert ist, wie wenige Axiome notig sind. Die metrischen Ebenen, die mit den axiomatisch gegebenen Gruppen definiert sind, sind daher von recht allgemeiner Natur. Eine metrische Ebene braucht nicht anordenbar (erst recht nicht stetig) zu sein. In einer metrischen Ebene braucht nicht freie Beweglichkeit zu bestehen. Es gibt auch metrische Ebenen mit nur endlich vielen Punkten und Geraden. Der Begriff der metrischen Ebene enthalt keine Entscheidung tiber die Parallelenfrage, d.h. tiber die Frage nach dem Schneiden oder Nicht- schneiden der Geraden. Die ebene metrische Geometrie, die wir ent- wickeln, enthalt ebene euklidische, hyperbolische und elliptische Geo- metrie als Spezialfalle, und wird daher, mit einem Ausdruck von J. BOLYAI, auch ebene absolute Geometrie genannt.