Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In recent years there has been an increasing interest in the regularization of ill-posed inverse problems for operators mapping between two Banach spaces. This thesis focuses on the case of linear, continuous operators and Banach spaces, which are convex of power type and/or smooth of power type. The main aim is to present new results regarding the Tikhonov regularization and the Landweber regularization, some of which are: convexity and smoothness properties of the wavelet characterization of the norm of Besov spaces, generalization of the discrepancy principle of Engl to the setting of Banach spaces, convergence rates for two minimization methods for the Tikhonov functional, adaptation of the Landweber iteration to Banach spaces convex of power type and smooth of power type and introduction of a modified version of the Landweber iteration. The quality of the algorithms introduced in this thesis is discussed with help of several numerical examples.