Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In this book, the biological systems were analyzed with the help of non-linear ordinary differential equations in the form of mathematical modeling. Firstly, I studied how one single species population model varies with respect to other models. Comparing different single species models, I investigated that logistic growth model is more realistic in comparison to the exponential growth model. Secondly, I studied mathematical modeling of two species population namely; predator-prey model and interspecific competition model. The models were analyzed and investigated through their solutions, steady states and trajectories in the phase plane. The two species system was found to be exhibited in stable periodic behavior for all initial conditions where populations were never considered zero. Ordinary differential equations contain a large field of distinct research in mathematical biology but my work has touched a little part of it. I believe that extensive and continuous involvement in mathematical biology research may result in to answer many questions for the development of this topic.