Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
Afhalen na 1 uur in een winkel met voorraad
In januari gratis thuislevering in België
Ruim aanbod met 7 miljoen producten
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In januari gratis thuislevering in België (via bpost)
Gratis levering in je Standaard Boekhandel
Omschrijving
The aim of this book is to present certain fundamental facts in the theory of algebraic surfaces, defined over an algebraically closed field lk of arbitrary characteristic. The book is based on a series of talks given by the author in the Algebraic Geometry seminar at the Faculty of Mathematics, University of Bucharest. The main goal is the classification of nonsingular projective surfaces (also called simply surfaces). In the context of complex algebraic varieties, the classification was obtained by Enriques and Castelnuovo. Around 1960, Kodaira [Kodl, Kod2] revived and simplified the classification of complex algebraic surfaces and extended it to the case of compact analytic surfaces. The problem of classifying surfaces in arbitrary characteristic remained open. The first step in this direction was the purely algebraic proof (valid in arbitrary characteristic), due to Zariski [Zarl, Zar2], of Castelnuovo's criterion of rationality. Then Mumford [Mum3, Mum4] introduced several new ideas, and the classification of surfaces in positive characteristic be- came possible. Finally, Bombieri and Mumford [BMl, BM2] completed the classification of surfaces in arbitrary characteristic. Their result was the following: The same types of surfaces that exist in the case when lk is the complex field arise in the general case, if one sets aside certain pathologies that arise only in characteristic 2 or 3.