• Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten

Adversarial Machine Learning

Mechanisms, Vulnerabilities, and Strategies for Trustworthy AI

Jason Edwards
Hardcover | Engels
€ 120,95
+ 241 punten
Pre-order nu, verschijnt op 30/04/2026
Eenvoudig bestellen
Veilig betalen
Gratis thuislevering vanaf € 30 (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

Enables readers to understand the full lifecycle of adversarial machine learning (AML) and how AI models can be compromised

Adversarial Machine Learning is a definitive guide to one of the most urgent challenges in artificial intelligence today: how to secure machine learning systems against adversarial threats.

This book explores the full lifecycle of adversarial machine learning (AML), providing a structured, real-world understanding of how AI models can be compromised--and what can be done about it.

The book walks readers through the different phases of the machine learning pipeline, showing how attacks emerge during training, deployment, and inference. It breaks down adversarial threats into clear categories based on attacker goals--whether to disrupt system availability, tamper with outputs, or leak private information. With clarity and technical rigor, it dissects the tools, knowledge, and access attackers need to exploit AI systems.

In addition to diagnosing threats, the book provides a robust overview of defense strategies--from adversarial training and certified defenses to privacy-preserving machine learning and risk-aware system design. Each defense is discussed alongside its limitations, trade-offs, and real-world applicability.

In Adversarial Machine Learning, readers will gain a comprehensive view of today's most dangerous attack methods:

  • Evasion attacks that manipulate inputs to deceive AI predictions
  • Poisoning attacks that corrupt training data or model updates
  • Backdoor and trojan attacks that embed malicious triggers
  • Privacy attacks that reveal sensitive data through model interaction and prompt injection
  • Generative AI attacks that exploit the new wave of large language models

Blending technical depth with practical insight, Adversarial Machine Learning equips developers, security engineers, and AI decision-makers with the knowledge they need to understand the adversarial landscape and defend their systems with confidence.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
336
Taal:
Engels

Eigenschappen

Productcode (EAN):
9781394402038
Verschijningsdatum:
24/02/2026
Uitvoering:
Hardcover
Formaat:
Genaaid
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 241 punten op je klantenkaart van Standaard Boekhandel
ACTIE

Nu 10% korting

op onze must-reads
ACTIE
Must-reads met 10% korting
E-BOOK ACTIE

Tot meer dan 50% korting

op een selectie e-books
E-BOOK ACTIE
E-bookactie korting
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.