Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je cadeautjes zeker op tijd in huis hebben voor de feestdagen? Kom langs in onze winkels en vind het perfecte geschenk!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Je cadeautjes zeker op tijd in huis hebben voor de feestdagen? Kom langs in onze winkels en vind het perfecte geschenk!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Mathematics originates with intuition. But intuition alone can only go so far and formalism develops to handle the more difficult problems. Formalism, however, has its inherent dangers. There are three types of formalism. Type I formalism, exemplified in the work of Euler, is basically heuristic reasoning, the use of familiar reasoning in areas where the reasoning might not or ought not apply. The results include startling successes, and also theorems admitting exceptions. Type II formalism, associated with names like Bolzano, Cauchy, and Weierstrass, attempts to clarify the situation by means of precise definitions of the terms used. Type III formalism, the axiomatic method, leaves the fundamental concepts undefined, but offers precise rules for their use. Such precision deserts intuition and one pays the price. Most dramatically, the formal definitions of Type II formalism allow for the construction of monsters - bizarre counterexamples that exhibit behaviour inconsistent with existing intuition. The initially repellant nature of these "monsters" leads to dissatisfaction that is only dispelled by their growing familiarity and applicability. The present book covers the history of formalism in mathematics from Euclid through the 20th century. It should be of interest to advanced mathematics students, anyone who teaches mathematics, and anyone generally interested in the foundation of mathematics.