Je cadeautjes zeker op tijd in huis hebben voor de feestdagen? Kom langs in onze winkels en vind het perfecte geschenk!
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
Je cadeautjes zeker op tijd in huis hebben voor de feestdagen? Kom langs in onze winkels en vind het perfecte geschenk!
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
  1. Boeken
  2. Bedrijf & Technologie
  3. Techniek
  4. Elektronica & Elektrotechniek
  5. A Complete Guide to Graph Representation Learning with Case Studies

A Complete Guide to Graph Representation Learning with Case Studies

E Chandra Blessie, Pethuru Raj Chelliah, B Sundaravadivazhagan
Hardcover | Engels
€ 203,45
+ 406 punten
Pre-order nu, verschijnt op 21/05/2026
Eenvoudig bestellen
Veilig betalen
Gratis thuislevering vanaf € 30 (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

Comprehensive resource on graph representation learning (GRL), exploring fundamental principles, advanced methodologies, and case studies

A Complete Guide to Graph Representation Learning with Case Studies provides a concise understanding of the subject of graph representation learning (GRL), a rapidly advancing field in the domain of machine learning. The book explores basic concepts to state-of-the-art techniques, enabling readers to progress from a fundamental understanding of the approach to mastering its application. The authors also cover the topics of graph embedding methods, graph neural network (GNN) -based approaches, and the latest trends in GRL such as deep learning, transfer learning, graph pooling, alignment, and matching, and graph machine learning.

The book includes examples of applications of graph learning methods with real-world case studies in which the covered methods can be utilized. It also includes innovative solutions to graph machine learning problems such as node classification, link prediction, and unsupervised learning, and discusses neighborhood overlap visualization techniques and overlapping neighborhoods in heterogeneous graphs. Finally, the book provides an overview of open and ongoing research directions and student projects, providing a glimpse into potential avenues for future work.

The book also includes information on:

  • Node-level features such as node degree, node centrality, closeness, betweenness, eigenvector, page rank centrality, clustering coefficient, closed triangles, egograph, and motifs
  • Neighborhood sampling techniques such as breadth-first sampling, depth-first sampling, snowball sampling, random walk, shallow walk, edge sampling, link-based sampling, and metapath-based sampling
  • Deep learning models including Graph Autoencoder (GAE), Variational Graph Encoder (VGAE), and Graph Attention Network (GAN)
  • Graph alignment and matching, covering subgraph matching and embedding for matching

A Complete Guide to Graph Representation Learning with Case Studies is a thorough and up-to-date reference on the subject for engineers and researchers in data science and machine learning as well as graduate students in related programs of study.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
432
Taal:
Engels

Eigenschappen

Productcode (EAN):
9781394314843
Verschijningsdatum:
31/03/2026
Uitvoering:
Hardcover
Formaat:
Genaaid
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 406 punten op je klantenkaart van Standaard Boekhandel
CADEAU

Onze must-reads: hét eindejaarsgeschenk

Vul een gat in iemands lectuur
CADEAU
GDABD Must-read
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.